<optgroup id="qdrq0"></optgroup>
<span id="qdrq0"></span>
<ruby id="qdrq0"><i id="qdrq0"></i></ruby>
  • <acronym id="qdrq0"></acronym><ol id="qdrq0"></ol>

    1. <acronym id="qdrq0"></acronym>
      <ruby id="qdrq0"><li id="qdrq0"></li></ruby>
      1. 歡迎訪問鄭州新世紀材料基因組工程研究院!

        郵箱登錄

        中文

        English

        Copyright?2018 鄭州新世紀材料基因組工程研究院  豫ICP備18030750號-1                                                                                                                                網站建設:中企動力  鄭州

         

        掃一掃查看
        手機網站

        >
        科學研究
        瀏覽量:

        計算 + 實驗 + 數據

         

        國家安全

        材料從發現、制造到應用的速度提高一倍,成本降低一半

         

        定向設計新材料、發展最佳工藝、大幅度縮短研發時間!

         

         

        MGI主旨

         
         
         

        To provide rational design strategies to guide experimental synthesize.

        To predict novel materials with desired properties.

        ----Shorten trial and error in the laboratory.

        產業驅動:材料基因組工程(MGI)計劃的目的及創新核心

         

        清潔能源

        人民福祉

        未來發展

         

        創新核心

        高通量計算

        大數據

        高可靠性分析

        高通量精準實驗

        2017-2020年材料基因組工程論文發表

        2020年

        1.Theoretical formulation of Li3a+bNaXb (X= Halogen) as potential artificial solid electrolyte interphases (ASEI) to protect Li anode. Phys. Chem. Chem. Phys., 2020, 22, 12918-12928

        2.Theoretical Identification of Layered MXene Phase NaxTi4C2O4 as Superb Anodes for Rechargeable Sodium-ion Batteries. J. Mater. Chem. A, 2020, 8, 11177-11187.

         

        2019年

        1.First principles study for band engineering of KNbO3 with 3d transition metal substitution. RSC Adv., 2019, 9, 7551–7559.

        2.Theoretical formulation of Na3AO4X (A=S/Se, X=F/Cl) as Highperformance Solid Electrolytes for All-Solid-State Sodium Batteries. J. Mater. Chem. A, 2019,7, 21985-21996.

        3.Theoretical tuning of Ruddlesden–Popper type anti-perovskite phases as superb ion conductors and cathodes for solid sodium ion batteries. J. Mater. Chem. A, 2018, 6, 19843-19852.

        4.A theoretical approach to address interfacial problems in all-solid-state lithium ion batteries: tuning materials chemistry for electrolyte and buffer coatings based on Li6PA5Cl halichalcogenides. J. Mater. Chem. A, 2019, 7, 5239-5247

         

        2018年

        1.High-capacity cathodes for magnesium lithium chlorine tri-ion batteries through chloride intercalation in layered MoS2: a computational study. J. Mater. Chem. A, 2018, 6, 6830-6839.

        2.Molecular-dynamics simulations of binary Pd-Si metal alloys: Glass formation, crystallisation and cluster properties. Journal of Non-Crystalline Solids 2018, 48, 772–786.

        3. High-capacity cathodes for magnesium lithium chlorine tri-ion batteries through chloride intercalation in layered MoS2: a computational study. J. Mater. Chem. A, 2018, 6, 6830-6839.

        4.Theoretical design of double anti-perovskite Na6SOI2 as super-fast ionic conductor for solid Na+ ion batteries. J. Mater. Chem. A, 2018, 6, 19843-19852.

         

        2017年

        1.Simulation of planar Si/Mg2Si/Si p-i-n heterojunction solar cells for high efficiency. Solar Energy 2017 158, 654–662.

        2.Theoretical design of solid electrolytes with superb ionic conductivity: alloying effect on Li+ transportation in cubic Li6PA5X chalcogenides. J. Mater. Chem. A, 2017, 5, 21846.

        3.From anti-perovskite to double anti-perovskite: tuning lattice chemistry to achieve super-fast Li+ transport in cubic solid lithium halogen–chalcogenides. J. Mater. Chem. A, 2018, 6, 73.

         

         

         

         

         

         

        韩日高清无码
        <optgroup id="qdrq0"></optgroup>
        <span id="qdrq0"></span>
        <ruby id="qdrq0"><i id="qdrq0"></i></ruby>
      2. <acronym id="qdrq0"></acronym><ol id="qdrq0"></ol>

        1. <acronym id="qdrq0"></acronym>
          <ruby id="qdrq0"><li id="qdrq0"></li></ruby>