<optgroup id="qdrq0"></optgroup>
<span id="qdrq0"></span>
<ruby id="qdrq0"><i id="qdrq0"></i></ruby>
  • <acronym id="qdrq0"></acronym><ol id="qdrq0"></ol>

    1. <acronym id="qdrq0"></acronym>
      <ruby id="qdrq0"><li id="qdrq0"></li></ruby>
      1. 歡迎訪問鄭州新世紀材料基因組工程研究院!




        Copyright?2018 鄭州新世紀材料基因組工程研究院  豫ICP備18030750號-1                                                                                                                                網站建設:中企動力  鄭州




        由邵國勝教授主辦的Energy & Environmental Materials被SCIE收錄!

        2020/07/30 18:00

          2020年7月,Energy & Environmental Materials被Science Citation Index Expanded (SCIE)收錄!

          Science Citation Index Expanded(科學引文索引) 作為Web of Science核心合集的三大數據庫之一,是權威的、高影響力的科技期刊引文索引數據庫,收錄了全球自然科學、工程技術和臨床醫學等領域170多個學科的9300多種世界一流的學術期刊。被SCIE收錄后,EEM自2018年創刊至今發表的全部文章,均可在Web of Science查詢引用。2021年夏天,EEM將迎來創刊后的首個影響因子!

          Energy & Environmental Materials是由鄭州大學主辦、Wiley出版的一本高水平國際性同行評議期刊,于2018年3月創刊并出版第一期,至今發表了10期共計60篇能源與環境材料相關的最新高水平研究成果。EEM擁有一個領域內頂尖專家學者組成的國際化編委團隊,發表的所有論文均經過快速嚴謹的同行評議。論文一經出版即可在Wiley Online Library上免費獲取全文,目前免收出版費。EEM 已被Chemical Abstracts Service、Environment Index和INSPEC收錄。



          Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. for the publication of high quality, agenda-setting research related to materials for energy harvesting, conversion, storage, and transport as well as cleaner environment. EEM publishes research work of significant general interest with high impact on society-relevant technological advances.

          The journal scope is intentionally broad and the journal recognizes the complexity of issues and challenges related to energy and environmental materials, and therefore, particularly welcomes experimental and theoretical work of interdisciplinary nature across basic science and engineering disciplines. The areas include but are not limited to materials and composites for:

          Photovoltaics & photoelectrochemistry

          Thermoelectricity, piezoelectricity, and triboelectricity

          Batteries, fuel cells, and supercapacitors


          Environmental remediation

          Clean air

          Carbon capture, storage, and utilization

          Clean water, waste water treatment, and desalination

          Devices with multifunctionality




          ·Definitions of Pseudocapacitive Materials: A Brief Review. Jiang, Y. and Liu, J. Energy & Environmental Materials, 2019,2(1): 30-37. Citations: 106

          · Revisiting Scientific Issues for Industrial Applications of Lithium–Sulfur Batteries. Liu, B., Fang, R., Xie, D., Zhang, W., Huang, H., Xia, Y., Wang, X., Xia, X. and Tu, J. Energy & Environmental Materials, 2018, 1(4), 196-208. Citations: 37

          ·A Perspective on Energy Densities of Rechargeable Li-S Batteries and Alternative Sulfur-Based Cathode Materials. Guo, W. and Fu, Y. Energy & Environmental Materials, 2018, 1(1), 20-27. Citations: 36

          ·Nanostructured Anode Materials for Non-aqueous Lithium Ion Hybrid Capacitors. Han, C., Li, H., Shi, R., Xu, L., Li, J., Kang, F. and Li, B. Energy & Environmental Materials, 2018, 1(2), 75-87. Citations: 31

          ·Recent Advances in Effective Reduction of Graphene Oxide for Highly Improved Performance Toward Electrochemical Energy Storage. Zhang, P., Li, Z., Zhang, S. and Shao, G. Energy & Environmental Materials, 2018, 1(1), 5-12. Citations: 32

          ·A Review of Advanced Energy Materials for Magnesium–Sulfur Batteries. Kong, L., Yan, C., Huang, J.-Q., Zhao, M.-Q., Titirici, M.‐M., Xiang, R. and Zhang, Q. Energy & Environmental Materials, 2018, 1(3), 100-112. Citations: 28

          ·Advances in Understanding Materials for Rechargeable Lithium Batteries by Atomic Force Microscopy. Wang, S., Liu, Q., Zhao, C., Lv, F., Qin, X., Du, H., Kang, F. and Li, B. Energy & Environmental Materials, 2018, 1(1), 28-40. Citations: 25

          ·Scalable Deposition Methods for Large-area Production of Perovskite Thin Films. Swartwout, R., Hoerantner, M.T. and Bulovi?, V. Energy & Environmental Materials, 2019, 2(2), 119-145. Citations: 24

          ·Recent Progress of MX ene-Based Nanomaterials in Flexible Energy Storage and Electronic Devices. Yang, Q., Wang, Y., Li, X., Li, H., Wang, Z., Tang, Z., Ma, L., Mo, F. and Zhi, C. Energy & Environmental Materials, 2018, 1(4), 183-195. Citations: 23

          ·Ruddlesden–Popper Perovskite for Stable Solar Cells. Liang, C., Zhao, D., Li, Y., Li, X., Peng, S., Shao, G. and Xing, G. Energy & Environmental Materials, 2018, 1(4), 221-231. Citations: 21









        <optgroup id="qdrq0"></optgroup>
        <span id="qdrq0"></span>
        <ruby id="qdrq0"><i id="qdrq0"></i></ruby>
      2. <acronym id="qdrq0"></acronym><ol id="qdrq0"></ol>

        1. <acronym id="qdrq0"></acronym>
          <ruby id="qdrq0"><li id="qdrq0"></li></ruby>